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ABSTRACT

Autologous adipose tissue is used for tissue repletion and/or regeneration as an intact lipoaspirate
or as enzymatically derived stromal vascular fraction (SVF), which may be first cultured into mesen-
chymal stem cells (MSCs). Alternatively, transplant of autologous adipose tissue mechanically frag-
mented into submillimeter clusters has recently showed remarkable efficacy in diverse therapeutic
indications. To document the biologic basis of the regenerative potential of microfragmented adi-
pose tissue, we first analyzed the distribution of perivascular presumptive MSCs in adipose tissue
processed with the Lipogems technology, observing a significant enrichment in pericytes, at the
expense of adventitial cells, as compared to isogenic enzymatically processed lipoaspirates. The
importance of MSCs as trophic and immunomodulatory cells, due to the secretion of specific fac-
tors, has been described. Therefore, we investigated protein secretion by cultured adipose tissue
clusters or enzymatically derived SVF using secretome arrays. In culture, microfragmented adipose
tissue releases many more growth factors and cytokines involved in tissue repair and regeneration,
noticeably via angiogenesis, compared to isogenic SVF. Therefore, we suggest that the efficient tis-
sue repair/regeneration observed after transplantation of microfragmented adipose tissue is due
to the secretory ability of the intact perivascular niche. STEM CELLS TRANSLATIONAL MEDICINE
2018;7:876–886

SIGNIFICANCE STATEMENT

The fat collected during a liposuction contains tissue-repairing cells used diversely to erase wrin-
kles, reconstruct breasts, or treat arthritic joints. These cells, dissociated after enzymatic digestion
of the fat, secrete diverse regenerative molecules playing important roles in tissue repair. Results
of this study show that keeping the micro-architecture of the fat intact, by physical fragmentation
into sub-millimetric units in the absence of enzyme treatment, guarantees optimal maintenance
of regenerative cells and dramatically improves factor secretion thereby. These results likely
explain the observed therapeutic superiority of micro-fragmented adipose tissue and suggest it
should be preferred to routinely used, enzymatically produced single cell suspensions.

INTRODUCTION

Pioneered at the end of the nineteenth century
for face and breast reconstruction, adipose tis-
sue (AT) grafting later met with scepticism and
mostly fell out of favor until new successful
attempts reinvigorated this surgical approach in
the 1980s [1,2]. First used intact or minimally
processed as a filler for tissue contouring and
augmentation, AT became a genuine cell therapy
product following the demonstration that it con-
tains multilineage progenitor cells that behave
as mesenchymal stem cells (MSCs) [3]. Routine
processing of lipoaspirates (LPA) for therapeutic
purposes consists of enzymatic dissociation into

single-cell suspensions, subsequent elimination
of adipocytes by centrifugation, and collection of
the remaining stromal vascular fraction (SVF),
which can be used immediately or following
in vitro cell expansion. The latter protocol involv-
ing long-term SVF culture allows isolation from
AT of bona fide MSCs, also named adipose-
derived stem cells, which are morphologically,
antigenically, and developmentally similar to
their bone marrow-derived counterparts
(reviewed in [4]), and can equally well control
graft-versus-host reaction via their immunosup-
pressive properties [5]. MSCs are isolated
through enzymatic digestion and are defined by
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specific criteria: plastic adhesion once cultured; expression of
markers as CD73, CD90, CD105, and ability to differentiate
in vitro into osteocytes, adipocytes and chondrocytes under
appropriate culture stimuli [6]. Bone marrow and AT are no
exceptions because MSCs can be derived from multiple other
organs after enzymatic dissociation and culture selection, such
as dental pulp [7], lung [8], skeletal muscle [9], and endometrium
[10], to cite but a few.

Vascularized tissues in general have the capacity to give
rise to MSCs in culture, and fittingly peri-endothelial cells,
namely pericytes that enclose capillaries and microvessels
[11–17], and adventitial stromal cells that surround larger
arteries and veins [18–22], were identified as in vivo progeni-
tors of cultured MSCs. This view is supported by the fact that
both pericytes and adventitial cells express MSC markers
in vivo and are endowed with mesodermal differentiation abil-
ities upon culture [13,23–27]. Moreover, similarity in gene
expression profile between MSCs and pericytes has recently
been reported [28]. Analysis of transcriptomes in single peri-
vascular cells purified from human AT confirmed this progeni-
tor status, as well as revealing a hierarchical organization
whereby adventitial stromal cells are developmentally more
primitive than pericytes [29].

It is, however, important to note that although resident peri-
cytes can replenish different cell lineages in vivo, such as adipo-
cytes [30], dental pulp [31,32], satellite cells and myofibers [33],
follicular dendritic cells [34], myofibroblasts [35–38], and
yield MSCs in culture, their behavior as bona fide MSCs
(i.e., immunosuppressive and secretory cells endowed with
osteo-, chondro-, adipo-, and myogenic developmental poten-
tials) in situ has not been documented. In addition, distinguishing
properties can be observed in isolated MSCs depending on the
tissue of origin and the isolation technique used [26,27], thus
suggesting the presence of a heterogeneous population of pro-
genitor cells in most adult organs [39–42]. Therefore, according
to current knowledge, although purified pericytes and adventitial
cells have been proven to yield MSCs in culture, whether they
are endowed with the same exact potential in situ is unknown.

In summary, AT is used therapeutically for the treatment
of different conditions, either as an intact tissue or enzymati-
cally derived SVF, used either immediately or cultured into
MSCs. Alternatively, undissociated AT transplants have been
supplemented with MSC injections to gain higher therapeutic
efficiency (reviewed in [43]).

A recent innovation has been the use of mechanically
fragmented AT, thus avoiding any enzymatic processing, for
the treatment of diverse medical conditions. One of the most
commonly used procedures to mechanically dissociate AT is
Lipogems technology. Lipogems is a device used to process
manual LPA into microfragmented adipose tissue (MAT) clus-
ters through a mild mechanical size reduction using a
sequence of sieves and steel marbles. It is a full immersion
closed system that can be used directly in the operating
room, reducing contamination risk that results from tissue
exposure and/or extended processing methods. The gener-
ated AT clusters are a few hundred micrometers in diameter
and free from blood and free lipids. Autologous transplanta-
tion of such MAT has been used with success in multiple
indications, spanning cosmetics, orthopaedics, proctology, and
gynaecology [44–54].

To further investigate the regenerative potential of MAT
compared to that of enzymatically derived SVF, we character-
ized the perivascular cell distribution and in vitro protein secre-
tion of Lipogems processed human AT versus isogenic
collagenase digested LPA. We show how mechanical fragmen-
tation of LPA modifies the resulting perivascular cell content of
the tissue, and additionally that enzymatic dissociation nega-
tively influences growth factor and cytokine secretion in vitro.

MATERIALS AND METHODS

Human Tissues

AT was collected with prior written informed consent from
healthy female patients (26–71 years old) undergoing cosmetic
liposuction or abdominoplasty. Ethical approval for the use of
human tissues in research was obtained from the South East
Scotland Research Ethics Committee (reference: 10/S1103/45).

Subcutaneous Abdominal Fat Collection

Subcutaneous AT from abdominoplasty samples was injected
with 50 to 100 ml of 0.9% NaCl solution, warmed at 37�C,
using a disposable tissue infiltration cannula (17Gx185 mm-VG
17/18). LPA were obtained either manually using a 10-cc luer
lock syringe connected to a disposable liposuction cannula (LGI
13Gx185 mm - AR 13/18) or using a standard vacuum pump-
assisted liposuction technique. All instruments used in the
manual lipoaspiration procedure were provided in the Lipo-
gems Surgical Kit (Lipogems, Milan, Italy).

Microfragmentation of Adipose Tissue

A total of 60 ml of manual lipoaspirate was processed each
time with the Lipogems 60 device following manufacturer’s
instructions. Briefly, the system was connected to a 0.9% NaCl
solution supply until the cylinder was completely filled and no
air was present in the system. First, 30 ml of the manual
lipoaspirate were pushed into the cylinder through the blue
size reduction filter inlet. The cylinder was shaken for 1 minute
to emulsify oil. During the whole process, blood components
and emulsified oil residues were removed by the flow of
saline. When the solution inside the cylinder appeared clear,
floating MAT was expelled from the cylinder through the gray
size reduction filter outlet into 10 ml syringes connected to
the device. This procedure was repeated, until 60 ml of lipoas-
pirate were fully processed, yielding from 20 to 30 ml of MAT.

Cell Isolation

Fresh AT specimens (LPA and MAT) were dissociated enzymati-
cally to obtain SVF. Briefly, samples were digested with type-II
collagenase (1 mg/ml collagenase in DMEM, both from Gibco,
Thermofisher Scientific, Waltham, MA) for 45 minutes at 37�C
in a shaking water bath. Samples were then washed with 2%
FCS/PBS (Sigma Aldrich, St Louis, MO) and filtered sequentially
through 100- and 70-μm cell strainers (BD Falcon, Corning,
NY). After centrifugation, pellets were resuspended in erythro-
cyte lysis buffer (155 mM NH4Cl, 170 mM Tris, pH 7.65, all
from Sigma-Aldrich) for 15 minutes at room temperature. Cells
were washed again with 2% FCS/PBS and filtered through 40-μm
cell strainers (BD Falcon) to obtain single cell suspensions. Viable
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cells were counted following trypan blue staining (BioRad, Hercu-
les, CA) on a haemocytometer.

Flow Cytometry Analysis

The SVF was stained with the following antibodies: CD31-V450
(1:400) or CD144-PerCP Cy5.5 (1:100), CD34-PE (1:100),
CD45-V450 (1:400) or CD45-APC Cy7 (1:100), and CD146-
BV711 (1:100) (all from BD Biosciences, San Jose, CA). Cells
were stained for 30 minutes at 4�C in the dark, followed by
washing with 2% FCS/PBS. Analysis was performed on a BD
LSR Fortessa 5-laser flow cytometer (BD Biosciences) using
Diva software (v.6.0, BD Biosciences). Single stained beads
were used as compensation controls. Data were analyzed
using FlowJo (v.10.0, FlowJo, Ashland, OR). Forward scatter
area (FSC-A) versus side scatter area (SSC-A) gate was used to
identify cells, followed by FSC-A versus forward scatter height
(FSC-H) to select single cells. Viable cells were gated as nega-
tive for 40,6-diamidino-2-phenylindole (DAPI, Life Technologies,
Carlsbad, CA) staining. Hematopoietic and endothelial cells
were excluded by gating on CD31 and CD45 negative cells.
Perivascular cells were identified as pericytes (CD146+ CD34−)
or adventitial cells (CD146− CD34+).

Fluorescent Immunohistochemistry

AT specimens (unprocessed AT, LPA and MAT) were fixed in
4% buffered paraformaldehyde (PFA) at 4�C overnight. Sam-
ples were immersed for 24 hours in 15% sucrose in PBS (w/w),
then embedded in 15% sucrose and 7% gelatin in PBS. After
4 hours at 37�C, samples were transferred to 4�C. After
24 hours, samples were frozen on dry ice. Embedded samples
were stored at −80�C and cryosectioned at 8–10 μm thickness.

Sections were fixed in 4% PFA prior to staining. Nonspecific
antibody binding was blocked with 10% goat serum in PBS
(Sigma-Aldrich) for 1 hour at room temperature. The following
uncoupled primary antibodies were used: mouse anti-human-
NG2 (1:100; ref. 554275, BD Biosciences), rabbit anti-human-
PDGFRβ (1:100; ref. 32570, Abcam, Cambridge, UK). All
primary antibodies were diluted in antibody diluent (Life
Technologies, Carlsbad, CA) and incubated at 4�C overnight.
After washing with PBS, sections were incubated for 1 hour at
room temperature with species-specific secondary antibodies
diluted 1:300. The following fluorochrome-conjugated second-
ary antibodies were used: anti-mouse-Alexa 555 IgG, anti-rab-
bit-Alexa 647 IgG, and streptavidin conjugated 488 (all from
Life Technologies). Directly biotinylated Ulex europaeus lectin
(UEA-1) was used as an endothelial cell marker for long-term
cultured cells (1:200; Vector-B1065, Vector Laboratories, Bur-
lingame, CA). Nuclei were stained with DAPI (Life Technolo-
gies) for 10 minutes at room temperature. Slides were
mounted using Fluoramount G (SouthernBiotech, Birmingham,
AL) and images were acquired using a fluorescence microscope
(Zeiss Observer, Zeiss, Oberkochen, Germany; Olympus BX61,
Olympus, Tokyo, Japan). Images were processed using Fiji soft-
ware [55] or ZEN Blue lite version (Zeiss).

Tissue Culture and Medium Collection

SVF cells derived from MAT or LPA were plated at a density of
6,000 cells/cm2 and cultured in basal medium, consisting of
DMEM Glutamax (Gibco) supplemented with 100 μg/ml strep-
tomycin (Sigma-Aldrich), 100 U/ml penicillin (Sigma-Aldrich)
and 20% heat-inactivated foetal calf serum (Sigma-Aldrich).
200 mg (corresponding to 200 μl of MAL) were plated in each

Figure 1. Vasculature in unprocessed and microfragmented adipose tissue. (A, B, C): Endothelial cells are stained with UEA-1. From left
to right: microfragmented adipose tissue (MAT), lipoaspirate (LPA), adipose tissue (AT). Larger vessels were observed only in LPA and
AT. (D, E, F): Boxed areas in A, B, C are showed enlarged in D, E, F respectively. Arrowheads indicate pericytes, which have been stained
using antibodies against PDGFRβ and NG2. Scale bar: 50 μm.
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well of a six-well plate and cultured in basal medium. After
8 days in culture under standard conditions (37�C, 5% CO2)
culture media from SVF and MAT were collected and stored
at −20�C.

Secretome Arrays

Secretomes were analyzed using the Proteome Profiler Human
XL Cytokine Array kit (ARY022b) and Human Angiogenesis
Array kit (ARY007), following manufacturer’s instructions (R&D
Systems, Minneapolis, MN). Conditioned media collected from
cultured SVF and MAT were centrifuged at 500g for 5 minutes
at room temperature to remove debris, filtered through a
70-μm cell strainer to get rid of adipocytes/small residues of
MAT, and incubated with both arrays. The signal was detected
using the LiCOR Odyssey Fc apparatus (LICOR, Lincoln, NE),
exposing array membranes for 10 minutes. Positive signals on
the membranes were quantified using Image Studio Lite Soft-
ware (LICOR). The average signal (pixel density) of the dupli-
cate spots corresponding to each protein was normalized on
the average signal of paired spots on the negative control.
Normalized signals of each protein were then used for com-
parative analysis.

Statistics

Statistical analysis was performed by using the Student’s t test
using Microsoft Excel or GraphPad Prism5 software. Results
are presented as means � SEM. A p value of less than .05 was
considered statistically significant.

RESULTS

The Perivascular Niche Is Preserved in
Microfragmented Fat

Detection of the endothelial cell marker Ulex europaeus agglu-
tinin 1 (UEA-1) receptor on sections of MAT, LPA, and AT illus-
trated the vascular network present in AT, with microvessels
located between adipocytes. Larger vessels were observed
principally in the unprocessed AT and LPA, while MAT was
mainly characterized by the presence of small, capillary-like
vessels (Fig. 1A–1C).

Staining for pericyte markers revealed that after AT
mechanical fragmentation, pericytes expressing NG2 or PDGFRβ
are normally distributed, still ensheathing endothelial cells in
microvessels (Fig. 1D). The same was observed in AT and LPA
specimens, suggesting that microfragmentation is not affecting
the perivascular cell compartment in microvessels (Fig. 1E, 1F).

MAT Is Enriched in Pericytes Compared to Lipoaspirate

AT samples (MAT and LPA) were digested using collagenase
and analyzed by flow cytometry. The average yield of nucle-
ated cells in the SVF was 27 × 103 � 15 × 103 cells per millili-
ter of MAT (n = 7) and 69 × 103 � 56 × 103 cells per milliliter
of LPA (n = 7). Viable cells were selected excluding debris,
dead cells, and doublets. Endothelial cells and leukocytes were
excluded from the analysis using CD31 and CD45, respectively.
Pericytes were identified as CD146+CD34−, and adventitial cells
as CD34+CD146− cells [56]. MAT was observed to be enriched
in pericytes compared to LPA. On an isogenic specimen analy-
sis, pericytes and adventitial cells in LPA account for 8.39%
and 51.5% of the cells, respectively, in agreement with

previously observed values [13,18,56] (Fig. 2B). In the MAT
counterpart, pericytes and adventitial cells amounted to 33.5%
and 5.46%, respectively (Fig. 2A). This difference between LPA
and MAT, regarding pericyte and adventitial cell numbers, was
observed to be significant (p < .05, n = 10; Fig. 2C).

Figure 2. Respective abundances of perivascular adventitial cells
and pericytes in MAT and LPA. (A, B): Dotplots showing adventitial
cells (CD34+CD146−) and pericytes (CD146+CD34−) populations in
MAT an LPA from the same donor. (C): Quantitative distribution of
pericytes and adventitial cells in LPA and MAT, n = 10, *p < .05.
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Microfragmented Fat Secretes in Culture a Higher
Number and Higher Amounts of Proteins than
Isogenic SVF

MSCs are known to secrete growth factors and cytokines,
either free or via microvesicle cargoes, involved in tissue repair
and regeneration [57,58]. Assuming that native perivascular
cells, the in vivo progenitors of MSCs, present in AT are
responsible for its regenerative potential, we aimed to com-
pare the secretome of MAT to that of enzymatically derived
SVF. Isogenic MAT and SVF isolated from four different donors
were cultured for 8 days in basal medium (Fig. 3A). Condi-
tioned media were then analyzed, using proteome profiler
commercial assays, for the presence of a range of cytokines
and growth factors. Four independent experiments revealed
that MAT secretes a greater number of cytokines and angio-
genic growth factors than SVF (Figs. 3B and 4A). Moreover,
comparative analysis on data derived from independent

experiments conducted on four different biological samples
revealed that most cytokines and angiogenic factors secreted
by both MAT and SVF were more abundant in the supernatant
of the former (Figs. 5 and 6). These results suggest that colla-
genase digestion reduces the secretory activity of AT stromal
vascular cells, both qualitatively and quantitatively. To directly
test this hypothesis, MAT was digested with collagenase, and
the derived SVF was placed in culture. Both intact and enzy-
matically dissociated MAT were cultured in parallel for 8 days
in basal medium and the resulting conditioned media were
analyzed as described above. Enzymatic treatment of micro-
fragmented fat dramatically reduced secretory activity, which
became comparable to that observed from conventional SVF
(Figs. 3B, 4A, 7A and 7B).

On detailed analysis of secreted angiogenic growth factors,
we found higher secretion by MAT of angiogenin, angiostatin/
plasminogen, DPPIV, endoglin, hepatocyte growth factor (HGF),

Figure 3. Angiogenic protein secretion by cultured MAT and isogenic SVF. (A): MAT and SVF cultured in basal medium. Scale bar:
500 μm. (B): Angiogenesis proteomic array showing secreted proteins from MAT and SVF after 8 days in culture. Capture antibodies are
spotted in duplicate, each dot doublet represents a detected protein. (C): Secretion level of different angiogenic proteins measured as
the average of the pixel intensity of the doublets and normalized to the negative control. Statistical analysis was performed on pooled
secretion values detected in four separate donors. *p < .05; **p < .01; ***p < .001.
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leptin, PDGFAB/BB, placental growth factor (PlGF), thrombos-
pondin 2, TIMP4, and uPA (Fig. 3C).

Regarding cytokine secretion, adiponectin, CD14, CD31,
CD40 ligand (CD154), chitinase 3-like 1, complement factor D,

EMMPRIN (CD147, basigin), GDF-15, IGFBP-2, IL1RA, IP-10, M-
CSF, MIF, MIG (CXCL9), MIP-3β (CCL19), PDGFAA, RANTES
(CCL5), RBP-4, relaxin-2, ST2, TNF-α, and uPAR (CD87) were sig-
nificantly more abundant in MAT supernatants compared to

Figure 4. Cytokine secretion by cultured MAT and isogenic SVF. (A): Cytokine proteomic array showing secreted proteins from MAT and
SVF after 8 days in culture. Capture antibodies are spotted in duplicate, each dot doublet represent a detected protein. (B): Secretion
level of different cytokines measured as the average of the pixel intensity of the doublets and normalized on the negative control. Statis-
tical analysis was performed on pooled secretion values detected in four separate donors. *p < .05; **p < .01; ***p < .001.
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SVF ones (Fig. 4B). In the cytokine arrays, the increased secre-
tion of endoglin, HGF, leptin, and DPPIV by MAT compared to
SVF observed in the angiogenesis array was replicated (Fig. 4B).

DISCUSSION

AT has long been used in the clinic as a plain, unprocessed tissue
graft. Adopting the enzymatically produced adipocyte free SVF
was seen as a major improvement, even more so as the AT-

Figure 5. Angiogenic protein secretion levels of MAT compared
to SVF. Secretion levels of angiogenic factors detected using the
angiogenesis proteomic array, expressed as fold change between
MAT and SVF values. The values represent the normalized pixel
intensity detected in four separate donors. The numbers at the
side of the list indicate fold changes.

Figure 6. Cytokine secretion levels of MAT compared to SVF.
Secretion levels of cytokines detected using the cytokine proteo-
mic array, expressed as fold change between MAT and SVF values.
The values represent the normalized pixel intensity detected in
four separate donors. The numbers at the side of the list indicate
fold changes.
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derived SVF can be grown in culture into therapeutically potent
MSCs [59]. However the use of dissociated AT-derived SVF, cul-
tured or not into MSCs, for applications in regenerative medicine
remains empirical as the exact mode of action of these cells is
still obscure, with progenitor potential, trophic, secretory, and
immunomodulatory activities being diversely suggested to medi-
ate tissue regeneration and repair.

As a middle path between intact AT and single cell suspen-
sions, mechanical dissociation of AT into microclusters (exem-
plified by the Lipogems system) has yielded a product of high
therapeutic value. In the present study, we used immunohisto-
chemistry to describe MAT clusters and compared those, side
by side, with SVF derived from the same donors in terms of
perivascular presumptive MSC content and secretory activity
in culture. As expected, the microanatomy of MAT is essen-
tially similar to that of intact AT, with capillaries and microves-
sels organized and distributed between adipocytes, and
pericytes wrapped around endothelial cells. However, quantifi-
cation by flow cytometry of pericytes and adventitial stromal
cells revealed that pericytes are encountered at a higher fre-
quency in MAT than in LPA and derived SVF, confirming previ-
ous observations [44,60]. Conversely, LPA contains more
adventitial stromal cells than MAT preparations do. This

suggests that microvessels are spared by microfragmentation,
and preserved in MAT, whereas larger arteries and veins,
encircled by the tunica adventitia, are partially lost after
mechanical dissociation. While both purified pericytes and
adventitial stromal cells yield MSCs in vitro [13,18], their
respective contributions to long-term conventional MSC cul-
tures are unknown. However, description of gene expression
in single cells has revealed that adventitial stromal cells are
developmentally more primitive than pericytes [29], although
we and other investigators have previously documented the
strong regenerative potential of pericytes purified from AT
[20,24,61–64]. Therefore, if the therapeutic value of Lipogems
is related to pericyte enrichment, those cells might exert their
regenerative action more indirectly, via growth factor secre-
tion, than as progenitor cells. This hypothesis was tested by
characterizing, qualitatively and quantitatively, growth factors
and cytokines produced in culture by MAT preparations and
SVFs obtained from the same AT samples. The overall conclu-
sion is that Lipogems-derived MAT produces higher amounts
of many tested growth factors and cytokines, as compared
with enzymatically dissociated SVF. As a main difference
between MAT and SVF, only the former contains adipocytes;
therefore, as expected, MAT but not SVF culture supernatants
contained factors secreted by adipocytes: adiponectin, which
regulates several metabolic cascades [65]; complement factor
D [66]; RBP-4, a retinol binding protein [67]; the anti-
inflammatory Il-1RA [68]; and leptin, the satiety regulating adi-
pokine [69]. No other molecules detected in MAT supernatants
are known to be secreted by adipocytes. Interestingly, several
of the factors present in higher amounts in MAT supernatants
stimulate angiogenesis, hence may indirectly support tissue
regeneration: angiogenin [70], endoglin [71], the VEGF family
member PlGF [72], the multifunctional HGF [73], and PDGF
[74]. The insulin-like growth factor binding protein IGFBP2,
which is much more abundant in MAT supernatants, also posi-
tively regulates angiogenesis through modulation of VEGF
expression [75], and TNFα, whose secretion is upregulated in
MAT cultures, can promote new vessel formation [76]. These
data support and extend the results of a previous study in
which Lipogems-derived MAT culture supernatants were
observed to stimulate endothelial cell (HUVEC) proliferation
and tube formation in vitro; accordingly, angiopoietin-1 and -2
were detected in higher amounts in these MAT supernatants,
as compared to culture supernatants of AT-derived MSCs [64].
In the present experiments, three inhibitors of angiogenesis
were also detected, albeit in very small amounts, in MAT
supernatants: IP-10 (CXCL10) [77], angiostatin [78], and throm-
bospondin 2 [79].

Remarkably, higher amounts of diverse mediators of
immuno-inflammation, leukocyte recruitment, and migration
were detected in MAT supernatants, as compared to SVF cul-
tures: GDF-15, a regulator of inflammation and biomarker in
diverse pathologies [80]; MIF, which controls inflammation
and innate immunity [81]; MIG (CXCL9), a T-cell chemoattrac-
tant [82]; MIP3β (CCL19), involved in immune cell migration
[83]; RANTES (CCL5), a chemokine chemotactic for multiple
leukocytes [84]; and CD40 ligand (CD154), which binds to
CD40 on antigen presenting cells [85]. It is known that adipose
tissue can support substantial inflammation [86], hence the
presence in culture supernatants of these many players of
immune-inflammatory responses. However, how these factors

Figure 7. Protein secretion of enzymatically digested MAT and
undigested MAT. (A): Angiogenesis proteomic array and (B) cyto-
kine proteomic array showing secreted proteins from enzymati-
cally digested MAT and undigested MAT after 8 days in culture in
basal medium. Capture antibodies are spotted in duplicate, each
dot doublet represent a detected protein.
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may influence tissue regeneration, following autologous trans-
plantation, is unknown, and interpretation is complicated by
the fact that many of these molecules can play multiple dis-
tinct roles. For instance, the CCL5 chemokine, which recruits
leukocytes at the site of inflammation, can also promote
angiogenesis [87]. Chitinase 3-like-1, dramatically overex-
pressed in MAT supernatants, can stimulate blood vessel for-
mation in tumors, besides playing major roles in inflammation,
angiogenesis, and tissue remodeling [88].

Why does MAT secrete more growth factors and cytokines
than SVF cultured under the same conditions? Besides adipo-
cytes, secretory cells within fat tissue include hematopoietic
cells, responsible for the production of most factors involved
in the regulation of immuno-inflammatory reactions, endothe-
lial and perivascular cells, including pericytes, and other cell
compartments loosely designated as stromal or “mesenchy-
mal.” The demonstration that mesenchymal stem/stromal cells
are of perivascular origin has supported the development of a
model whereby pericytes and other perivascular cells can, in
adverse pathologic conditions, lose contact with blood
vessel walls, migrate away from blood vessels and become
reprogrammed into regenerative cells [89], playing this role as
tissue progenitors [13,18], niche cells for lineage specific stem
cells [24], “medicinal secretory cells” producing trophic factors
[57], as well as scarring pro-fibrotic cells [35–38]. The present
results suggest that AT resident regenerative cells perform
these functions much more efficiently when maintained in the
intact perivascular environment, such as that provided by the
Lipogems mechanical fragmentation system, than following
digestion and culture. Notably, it is known that tissue enzy-
matic dissociation can cause changes in gene expression [90]
and exosome content [91] and this research reveals how
severely AT residing native MSCs can be affected when
reduced to single cell suspensions. Taken together, these data
reveal differences in physically fragmented AT, compared to

SVF, which provide the foundations on which to build an
explanation of the former’s therapeutic superiority. Further
investigations, not only in culture but also involving experi-
ments in animals, are needed to confirm the effect of enzy-
matic dissociation on native MSCs, giving more insight into the
therapeutic effect of MAT.
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