
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=kogg20

Organogenesis

ISSN: 1547-6278 (Print) 1555-8592 (Online) Journal homepage: https://www.tandfonline.com/loi/kogg20

Mesenchymal stem cells: potential for therapy and
treatment of chronic non-healing skin wounds

Giovanni Marfia, Stefania Elena Navone, Clara Di Vito, Nicola Ughi, Silvia
Tabano, Monica Miozzo, Carlo Tremolada, Gianni Bolla, Chiara Crotti,
Francesca Ingegnoli, Paolo Rampini, Laura Riboni, Roberta Gualtierotti &
Rolando Campanella

To cite this article: Giovanni Marfia, Stefania Elena Navone, Clara Di Vito, Nicola Ughi, Silvia
Tabano, Monica Miozzo, Carlo Tremolada, Gianni Bolla, Chiara Crotti, Francesca Ingegnoli, Paolo
Rampini, Laura Riboni, Roberta Gualtierotti & Rolando Campanella (2015) Mesenchymal stem
cells: potential for therapy and treatment of chronic non-healing skin wounds, Organogenesis, 11:4,
183-206, DOI: 10.1080/15476278.2015.1126018

To link to this article:  https://doi.org/10.1080/15476278.2015.1126018

Published online: 18 Feb 2016. Submit your article to this journal 

Article views: 2417 View related articles 

View Crossmark data Citing articles: 35 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=kogg20
https://www.tandfonline.com/loi/kogg20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15476278.2015.1126018
https://doi.org/10.1080/15476278.2015.1126018
https://www.tandfonline.com/action/authorSubmission?journalCode=kogg20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=kogg20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15476278.2015.1126018
https://www.tandfonline.com/doi/mlt/10.1080/15476278.2015.1126018
http://crossmark.crossref.org/dialog/?doi=10.1080/15476278.2015.1126018&domain=pdf&date_stamp=2016-02-18
http://crossmark.crossref.org/dialog/?doi=10.1080/15476278.2015.1126018&domain=pdf&date_stamp=2016-02-18
https://www.tandfonline.com/doi/citedby/10.1080/15476278.2015.1126018#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/15476278.2015.1126018#tabModule


Mesenchymal stem cells: potential for therapy and
treatment of chronic non-healing skin wounds

Giovanni Marfia,1*,# Stefania Elena Navone,1,# Clara Di Vito,2 Nicola Ughi,3

Silvia Tabano,4 Monica Miozzo,4 Carlo Tremolada,5 Gianni Bolla,6 Chiara Crotti,3

Francesca Ingegnoli,3 Paolo Rampini,1 Laura Riboni,2 Roberta Gualtierotti,3 and
Rolando Campanella1

1Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico; University of Milan;
Neurosurgery Unit; Laboratory of Experimental Neurosurgery and Cell Therapy;

Milan, Italy;
2University of Milan; Department of Medical Biotechnology and Translational Medicine;

LITA-Segrate; Milan, Italy;
3Division of Rheumatology; Istituto Gaetano Pini; Milan Italy; Department of Clinical

Science & Community Health; University of Milan; Milan, Italy;
4Fondazione IRCCS C�a Granda Ospedale Maggiore Policlinico; University of Milan;

Division of Pathology; Milan, Italy;
5Istituto Image; Milan, Italy;

6Fondazione IRCCS C�a Granda Ospedale Maggiore Policlinico; University of Milan;
Milan, Italy

ABSTRACT. Wound healing is a complex physiological process including overlapping phases
(hemostatic/inflammatory, proliferating and remodeling phases). Every alteration in this mechanism
might lead to pathological conditions of different medical relevance. Treatments for chronic non-
healing wounds are expensive because reiterative treatments are needed. Regenerative medicine and
in particular mesenchymal stem cells approach is emerging as new potential clinical application in
wound healing.
In the past decades, advance in the understanding of molecular mechanisms underlying wound
healing process has led to extensive topical administration of growth factors as part of wound care.
Currently, no definitive treatment is available and the research on optimal wound care depends upon
the efficacy and cost-benefit of emerging therapies.
Here we provide an overview on the novel approaches through stem cell therapy to improve
cutaneous wound healing, with a focus on diabetic wounds and Systemic Sclerosis-associated ulcers,
which are particularly challenging. Current and future treatment approaches are discussed with an
emphasis on recent advances.
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ABBREVIATIONS. ADSCs, Adipose derived stem cells; APCs, antigen presenting cells; BM-
MSCs, Bone Marrow Mesenchymal Stem Cells; EGF, Epidermal Growth Factor; E-MSCs,
Endometrium Mesenchymal Stem Cells; FDA, Food and Drug Administration; FGF-2, Fibroblast
Growth Factor 2; GM-CSF, Granulocyte Macrophage Colony-Stimulating Factor; GMP, Good
Manufacturing Practices; IL, Interleukin; INF-ɣ, Interferon Gamma; MSCs, Mesenchymal stem cells;
NK, Natural Killer; PDGF, Platelet derived growth factor; PGE2, Prostaglandin E2; SDF-1, Stromal
Cell-Derived Factor 1; SSc, Systemic Sclerosis; SVF, stromal vascular fraction; TGF-b,
Transforming Growth Factor Beta; TNF-a, Tumor Necrosis Factor Alpha; UCB-MSCs, Umbilical
Cord Blood Mesenchymal Stem Cells; VEGF, Vascular Endothelial Growth Factor; vWF, Von
Willebrand factor

INTRODUCTION

A wound is defined as a disruption of the
normal anatomic structure and functional integ-
rity of the skin.1 Chronic or non-healing
wounds are wounds that do not progress
through the normal wound healing process,
resulting in an open laceration of varying
degrees of severity.2 These conditions may be
associated to a number of different pathological
conditions such as diabetes,3 venous stasis,4

autoimmune diseases, such as systemic lupus
erythematosus, rheumatoid arthritis, Crohn’s
disease,5 and and Systemic Sclerosis (SSc),6

for which no definitive therapies are currently
available. It has been suggested that all the
aforementioned pathological conditions gener-
ally lead to a hyper-inflammatory environment
that contributes to the impairment of the physi-
ological healing processes.

It has been estimated that wound lesions
affect more than 5.7 million people in the US,
and that the relative annual health care costs
account approximately for 20 billion US dol-
lars.7 Among the 150 millions of patients
affected with diabetes worldwide, 15% suffer
from foot ulcerations which often evolve into
non-healing chronic wounds.8 Furthermore,
annually, 2.5 million pressure ulcers need treat-
ment in the US,9 600,000 patients suffer from
venous ulcers10 and 1.1 million burn injuries
require medical attention.11

Wound healing is characterized by a multi-
step interactive process that leads to the restora-
tion of a functional dermis/epidermis layer and
revascularization of the skin.12 The initial
phase of healing is characterized by an

inflammatory reaction aimed at controlling
bleeding at the wound site through a complex
interaction of activated cells with coagulation
proteins and complement mediators. The latter
help the recruitment and the infiltration of neu-
trophils and mast cells that clear the wound
from dead cells, debris, foreign particles and
bacteria. This process leads to the formation of
granulation tissue that favors the transition
from inflammation to repair.12

Patients with autoimmune diseases, such as
diabetes or SSc, have experienced vascular
damage, that leads to severe complications
such as ulcers often associated with severe pain
strongly impairing daily life activities.13,14 In
these patients peripheral ulcerations are sus-
tained by chronic local inflammation, that pre-
vents healing processes.14,15

Conventional therapies for non-healing
wounds have been primarily targeted on the
determinants of such chronic inflammation by
enhancing tissue repair through the use of spe-
cific growth factors (GFs). Among these, beca-
plermin, a recombinant human platelets-
derived growth factor (PDGF), has been
approved for the treatment of diabetic wounds
in association with good local care. Limitations
to the use of this GFs are: malignancies, infec-
tions at the site of the ulcer and the contraindi-
cation in the case of ulcers with a diameter >
than 5 cm2 or ulcers that require prolonged
treatment ulcers to treat.16 Furthermore, the
clinical outcome of these approaches has been
discouraging as the efficacy of these drugs is
jeopardized by specific neutralization and/or
biological degradation. Finally, a recent
Cochrane Database Systematic Review found
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that many randomized clinical trials were con-
ducted with a high risk of bias, and that further
trials are needed before drawing a firm conclu-
sion that GFs are able to increase the likelihood
of a complete wound healing in diabetic foot
ulcers.17

Cell-based therapies are being gradually
introduced into routine medical care to manage
skin wounds because they can repair/replace
damaged tissue with a normal one due to their
natural ability to produce cytokines and mole-
cules necessary for wound healing. Mesenchy-
mal stem cell therapy, with particular focus on
adipose derived stem cells (ADSCs), is a novel
approach for the treatment of chronic non-heal-
ing wounds through: (1) structural repair via
cellular differentiation; (2) immune-modula-
tion; (3) secretion of growth factors that drive
neovascularization and re-epithelialization; and
(4) mobilization of resident stem cells.11

MESENCHYMAL STEM CELLS
DESCRIPTION

Mesenchymal stem cells (MSCs) are multi-
potent and self-renewable progenitor cells,
identified for the first time in the bone marrow
in the ’50s as fibroblast precursors. After their
discovery, MSCs have been isolated in several
tissues, including adipose tissue, bone marrow,
umbilical cord blood, peripheral blood, endo-
metrium, dental pulp, dermis, amniotic fluid,12-
15,18,19 as well as in tumors.20

Regardless of their origin, MSCs exhibit a
wide differentiating potential, since they are
able to give rise to specialized cells of meso-
dermal origin (i.e., osteocytes, adipocytes,
chondrocytes, myoblasts, and tenocytes), and
to differentiate into cells of ectodermal ori-
gin.19 Even though MSCs are usually defined
by their ability to differentiate into tissues in
vitro, their trophic, paracrine and immunomod-
ulatory functions are those that may have the
greatest therapeutic impact in vivo.22 A large
body of medical literature indicates that MSCs
are able to repair damaged tissues, because
they can migrate toward injured sites in
response to inflammation, differentiate into
cells and influence the microenvironment

through the release of molecules involved in
reparative processes and tissue regeneration
such as cytokines (i.e., PGE2, GM-CSF, IL-1,
RA, IL-7, IL-8, IL-10, and IL-11), chemokines
(as SDF-1) and growth factors22–25 (Fig. 1). In
addition, MSCs participate to tissue rescue
through pro-angiogenic, anti-fibrotic, and anti-
apoptotic pathways26–28 and a strict correlation
between MSCs and blood vessel density in stro-
mal vascularized tissues exists.29 Stem cells
live and reproduce themselves in the morpho-
functional unit called niche, in which a huge
network of messages (i.e., the “secretome”), is
fashioned through the embedded cells.30 MSCs
play a pivotal role in all the phases of the heal-
ing process that starts at the wound margin
where epidermal cells proliferate and new
blood capillaries grow to form granulation tis-
sue. Furthermore, MSCs stimulate endothelial
cell recruitment through the secretion of pro-
angiogenic factors such as vascular endothelial
growth factor (VEGF), modulate tumor necro-
sis factor-a (TNF-a) production and reduce
Natural Killer (NK) cell function in the inflam-
matory phase, lowering interferon-g (IFN-g)
activity in the process. In the last phase of
wound healing, MSCs modulate scar formation
through PGE2 secretion, IL-10 up-regulation,
IL-6 and IL-8 down-regulation and reduction
of collagen production.31–33 Finally, MSCs
have immunomodulatory properties through
the production of anti-inflammatory cytokines
and the inhibition of CD4+ and CD+8 T cells,
B-cells, and NK cells proliferation.34 On the
basis of safety and efficacy in preclinical and
clinical preliminary reports,21 MSC therapy
represents a method to treat conditions that cur-
rently result in generally poor outcomes or
invasive surgery. Indeed, MSC require further
investigations to determine in vivo distribution
of cells and their therapeutic mechanisms, to
optimize its use in personalized regenerative
medicine.

TYPES OF MESENCHYMAL STEM
CELL

In 2006, the Mesenchymal and Tissue Stem
Cell Committee of the International Society for
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Cellular Therapy (ISCT) defined the minimal
criteria to define the phenotype of MCSs: i)
ability to adhere in culture conditions, ii) sur-
face expression of CD105, CD73 and CD90,
but not of CD45, CD34 CD14, CD11b, CD79a,
CD19 and HLA-DR, and iii) differentiation
ability toward osteocytes, chondrocytes and
adipocytes.35 Although ISCT criteria require
CD34 negativity, recent reports demonstrate
that MSCs originated from adipose tissue
express CD34 as a progenitor marker that dis-
tinguishes a distinct subset of cells with pro-
nounced differentiation capacity.36 MSCs can
be derived from several tissues, but the best
source to develop MSC-based regenerative
therapies has not been identified yet.

Bone marrow mesenchymal stem cells
(BM-MSCs)

Bone marrow is constituted by a heteroge-
neous cell population of stromal cells forming
the niche responsible for the maintenance of
haematopoietic stem cells. In vitro culture of

BM-MSCs shows that this population is com-
posed of a mix of tri-, bi-, and mono-potent
cells. This heterogeneity could determine the
BM-MSCs growth, senescence and differentia-
tion potentials. Recent reports on direct injec-
tion of BM-MSCs into injured tissues
demonstrated improved repair through mecha-
nisms of differentiation and/or release of para-
crine factors.37–38

Although bone marrow represents the main
source of MSCs, this has some limitations.
Indeed, the aspiration of BM-MSCs is an inva-
sive procedure, the amount of cells is modest
and their differentiation potential decreases
with age.39,40

Umbilical cord blood mesenchymal stem
cells (UCB-MSCs)

An alternative and attractive source of MSCs
is represented by umbilical cord blood that is
easier to be collected than bone marrow41 and
shows interesting immunoregulatory proper-
ties.42 Several reports show the therapeutic

FIGURE 1. Mesenchymal stem cell therapy: role and function Depending on the microenvironment,
MSCs are able to secrete several factors which may exert different functions via the release of dif-
ferent types of molecules involved in angiogenesis, immunomodelation, homing, ECM deposition
and remodelling, proliferation, anti-apoptosis, and neuroprotection. 26-28

186 G. Marfia et al.



potential of UCB-MSCs in humans. There is
evidence that UCB-MSCs can improve wound
healing and UCB-MSCs CD34+ cells were
employed to treat skin wounds refractory to
conventional treatment including surgery.43

Moreover, several clinical trials are ongoing
to evaluate the application of these cells in
the treatment of burns (clinicaltrials.gov
NCT01443689), and chronic diabetic wounds
(clinicaltrials.gov NCT01413035).

Endometrium mesenchymal stem cells
(E-MSCs)

Also human endometrium represents a
promising alternative source of MSCs that can
be retrieved after hysterectomy or diagnostic
curettage and from menstrual blood.44

Meng and co-workers demonstrated that
endometrium-derived MSCs (E-MSCs) can be
rapidly expanded in vitro and differentiated
into several functional cells including cardio-
myocytes, respiratory epithelium, neuronal
cells, endothelial cells, pancreatic cells, myo-
cytes, hepatocytes, adipose cells and osteo-
cytes.15 Murphy and colleagues demonstrated
that E-MSCs show interesting regenerative
capacities, especially at ischemic sites, where
they are able to induce angiogenesis.45

Recently, autologous tissue engineered scaf-
folds using artificial meshes and E-MSCs
were prepared for regenerative therapy.46

They were demonstrated to be suitable for fas-
cial repair.47 E-MSCs enhance neovasculari-
zation, reduce chronic inflammation, support
tissue integration – likely because of their
capability to modulate tissue response toward
foreign materials – and promote distensibility
of the artificial mesh.48,49 Overall, these fea-
tures make E-MSCs very suitable for wound
repair.

Induced pluripotent stem (iPS) cells

Among the main sources of MSCs that might
be used in the repair and regeneration of injured
skin, induced Pluripotent Stem (iPS) cells have
been used to study disease mechanisms, to test

drugs and to develop personalized cell thera-
pies. iPS cells are a type of pluripotent stem
cell artificially derived from a non-pluripotent
cell, typically an adult somatic cell, by inducing
expression of a defined set of transcription fac-
tors49 or recombinant proteins channeled into
the cells via poly-arginine anchors.50 iPS cells
were first produced in 2006 from mouse cells 51

and in 2007 from human cells.52 MSCs derived
from iPS cells (iPS-MSCs) offer the advantages
of both MSCs and IPS cells: abundance, pas-
saged >40 times in culture, sustain the self-
renewal capacity, and they are also no longer
tumorigenic.53 In wounds, iPS-MSCs have
been demonstrated to participate in tissue repair
after autologous transplantation without immu-
nological rejection.53 The transplanted cells in
hindlimb muscles and peripheral nerves of
mouse model for diabetic polyneuropathy
(DPN), ameliorated nerve conduction veloci-
ties, plantar skin blood flow, increased the
number-to-muscle fiber ratios, suggesting that
iPS-MSC transplantation might have therapeu-
tic effects on DPN through secreting angio-
genic/neurotrophic factors and differentiation
to Schwann cell-like cells.54 Moreover, recent
studies have further support the use of iPS in
skin regeneration. The authors successfully
used human keratinocyte-derived iPSCs to
reconstitute skin in vitro for the treatment of
recessive dystrophic epidermolysis bullosa.55

Indeed, active studies in both animal models
and future clinical trials need be conducted to
develop effective dosing, timing and delivery
routes.

Adipose derived mesenchymal stem cells
(ADSCs)

Basic research and preclinical studies of
regenerative medicine have been mainly
focused on adipose-derived mesenchymal stem
cells (ADSCs). In the last years safety and effi-
cacy of implanted ADSCs in different animal
models have been investigated and promising
preclinical studies with good perspectives for
translational approaches are underway.

The adipose tissue is a highly specialized
and complex connective tissue with important
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functions such as: i) protection or cushion from
mechanical injury, ii) insulation against cold,
iii) structural and metabolic support as an
energy reservoir through fat accumulation, iv)
dynamic participation in endocrine physiology.
The adipose tissue is considered an important
source of restorative growth factors,56,57 it has
multi-lineage differentiation capacity,58 it can
induce immunosuppression of activated
immune cells,59 it is able to homing to areas of
injury,60 and it has in vivo differentiation
capacity to recreate a physiological condition
when transplanted into a pathological
microenvironment.61

Unlike BM-MSCs, ADSCs can be obtained
in large quantities at low risk. They are more
abundant on a per gram basis (50,000 vs. 100–
1,000) and more easily accessible than BM-
MSCs.62 However, studies have demonstrated
that not all fat depots are equal in terms of qual-
ity of ADSCs, whereby the percentages of stem
cells range from 1 to 10%, most likely depend-
ing on the donor and tissue harvesting site.
ADSCs harvested from the superficial abdomi-
nal depot above Scarpa’s layer have been
shown to be more resistant to apoptosis than
other subcutaneous depots including the arm,
hip, and thigh regions.63 In addition, younger
patients appear to have increased induction of
their ADSCs than older patients.64 In humans,
subcutaneous adipose tissue can be obtained by
liposuction aspirate (preferable option) or dur-
ing reconstructive surgery. At variance with the
latter during which adipose tissue is obtained in
solid pieces, the isolation of adipose tissue after
liposuction is rather simple, as the procedure
yields already finely minced homogeneous tis-
sue fragments on which the enzymatic diges-
tion is more efficient. In 2001 Zuk et al.
developed an ADSCs isolation protocol that
has become the most widely used up to now.58

More recently, Bianchi and colleagues65

described an innovative system, named Lipo-
gems, providing a non-expanded, ready-to-use
fat product. This system used mild mechanical
forces in a completely closed system, avoiding
enzymes, additives, and other manipulations.
This innovative enzyme-free technology has
been developed to process variable amounts of
lipoaspirates, resulting in a non-expanded

adipose tissue product that contains human
ADSCs.65,66

The functional cells of adipose tissue are adi-
pocytes, which respond to insulin, secrete adipo-
kines such as leptin and adiponectin, and store
triglycerides in large, lipid-filled vacuoles.

Although adipocytes constitute almost 90%
of adipose tissue volume,67 adipose tissue
yields a heterogeneous population of many
other cell types including ADSCs, preadipo-
cytes, endothelial cells, pericytes, haemato-
poietic -lineage cells, and fibroblasts.
Approximately 0.5£104 –2£105 ADSCs can
be isolated per gram of adipose tissue.63

Most sources indicate that in the SVF,
ADSC frequency is of 5.1–20%. Endothelial
cells (mature and progenitors) are identified
through the expression of CD146+/CD31
+/CD144+/VEGFR2+ and could represents
from 7% up to ~30% of SVF.68 Depending
on processing, fibroblasts could represent up
to 50% of SVF.69 CD34+ cells are present at
large number and could compose up to 63%
of SVF. It has also been described that the
SVF is composed of nearly 11% CD14+
cells, ~2% CD31+ cells, ~7% CD34+, ~9%
CD45+ cells, ~29% CD90+, and ~47% 146+
cells.70 Other studies indicated that SVF of
human adipose tissue contained: endothelial
progenitors, pericytes, CD146+/CD34+ tran-
sitional cells, and supra-adventitial adipose
stromal cells71 (Fig. 2).

In summary, the stromal vascular fraction
(SVF) of adipose tissue is composed of many
mature, progenitor and stem cell types. There-
fore, depending on adipose tissue processing
method, the composition of SVF and relative
values of each cell population can differ
significantly.

In the following sections we will examine
the recent results by ADSC therapy in chronic
wound-pathologies as diabetes, and autoim-
mune diseases, with particular attention for sys-
temic sclerosis (SSc).

WOUND HEALING

Wound healing is a complex and dynamic
process of replacing devitalized and missing
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cellular structures and tissue layers. The human
adult wound healing process can be divided
into 3 distinct programmed phases: i) hemosta-
sis/inflammation, ii) proliferation, and iii)
remodelling. These phases and their biophysio-
logical functions must occur in the proper
sequence, at a specific time, and continue for a
specific duration at an optimal intensity by the
actions of the main actors represented by all
skin cells, keratinocytes, fibroblasts, endothe-
lial cells, nerve cells, immune cells as well as
blood cells (i.e., white blood cells, red blood
cells , platelets).

1. hemostasis/Inflammation begins at the
time of injury and lasts for 24 to 48 hours.
This phase begins with hemostasis and
leads to inflammation. Platelets form the
initial thrombus release growth factors
that induce the chemotaxis and prolifera-
tion of neutrophils and macrophages,
which then become the prominent cell of
this phase and release various growth fac-
tors and cytokines that change the moder-
ately acellular wound into a highly
cellular environment.

2. Fibroblasts proliferate to become the
dominant cell of the proliferative phase.
They produce collagen, which provides
structure to the wound and replaces the
fibronectin–fibrin matrix with angiogene-
sis of new capillaries and with the epithe-
lialization support of Keratinocytes.

3. In the remodelling phase collagen synthe-
sis and degradation reach equilibrium.
Fibroblasts organize and cross-link the
collagen, wound strength gradually
increases, wound contraction occurs, and
fibroblast density decrease.

Impaired wound healing occurs for defects
in the normal tissue response to injury due to
local or systemic factors and to poor treatment
of the wound, resulting in chronic skin lesions,
or ulcers.

Chronic or non-healing wounds are wounds
that do not follow the normal wound healing
process, resulting in an open laceration of
varying degrees of severity.72 This disorder
may be associated to a number of different
pathological conditions such as diabetes,73

venous stasis,74 and chronic autoimmune

FIGURE 2. SVF features SVF is composed of many mature, progenitor and stem cell types.
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diseases, such as systemic lupus erythemato-
sus, rheumatoid arthritis, Crohn’s disease, 75

and SSc,76 for which effective therapies are
no currently available.

It has been suggested that all these diseases
generally contribute to the generation of a
hyper-inflammatory environment that further
impairs the physiological healing processes.
Chronic ulcers affect over 6 million people in
the United States, with an incidence that is
expected to grow mirroring the increasing
mean age of general population and the number
of subjects affected by diabetes. Chronic ulcers
strongly affect the quality of life and productiv-
ity of the patients, representing a financial bur-
den to the health care system. The average cost
of treatment per patient is about $ 1,000 and in
46% of patients the healing process lasts 26
weeks, in 15% of subjects may last up to 2 y77

Cell-based therapies are slowly gaining
ground in routine medical care and, especially,
in wound management of skin. They offer
promise for the repair and/or replacement of
damaged tissue and the restoration of lost func-
tionality because they possess many of the cri-
teria necessary for wound healing.78

ADSCS APPLICATION FOR WOUND
HEALING THERAPY

The ability of ADSCs to play a role in
wound healing seems strictly related to their
anti-inflammatory properties, which also aids
the tolerance of transplanted cells even in the
case of allogenic ADSC both in acute and in
chronic conditions, as they exhibit pleiotropic
immune regulatory activities (e.g., inhibit the
function of different immune cell subpopula-
tions of the innate and adaptive immunity).
These properties are mediated by the release of
soluble paracrine factors and by direct cell-to-
cell interactions with professional antigen pre-
senting cells (APCs) such as dendritic cells,79 T
cells,80,81 B cells82 and macrophages.83 ADSCs
are able to block APCs maturation in a contact-
dependent manner, to induce the expression of
anti-inflammatory cytokines such as IL-10 and
to enhance TGF-b activity.57

The application of ADSCs in wound repair
and tissue regeneration has been demonstrated
in a number of experimental models both in
vitro and in vivo. ADSCs in cutaneous wounds
significantly accelerated the re-epithelization
by promoting human dermal fibroblast prolifer-
ation through direct cell–cell contact or via
paracrine secretion of a variety of growth fac-
tors. In a full thickness excisional injury model
in rats, ADSCs were shown to enhance neovas-
culogenesis and to accelerate wound closure
via secretion of VEGF-A, hepatic growth fac-
tor, and FGF-2,84 and thus promoting subse-
quent angiogenesis and proliferation of
keratinocytes or dermal fibroblast.57 This study
also validated the differentiation potential of
ADSCs into endothelial and epithelial cell
types, supporting the applicability of ADSCs to
tissues regeneration.

FOCUS ON ADSCS APPLICATION
FOR WOUND HEALING IN DIABETES

Impaired wound healing is a major clinical
problem in diabetic patients leading to limb
amputation in several cases.85 Cell-based thera-
pies are promising in this field and ADSCs are
good candidates.84 Recent preclinical studies,
including animal models of diabetes, showed
the beneficial effect of ADSC administration in
promoting wound healing.86

Kuo and colleagues investigated the effect
of ADSCs transplantation into streptozoto-
cin-induced diabetes rodent model wounds.
Results revealed that the complete wound
healing time was significantly decreased in
the ADSC-treated group compared to con-
trols. Moreover, histological examination
revealed that the ADSC-treated group
showed a significant reduction in the pro-
inflammatory reaction, with significantly
increased levels of EGF, VEGF, rPH, and
Ki67 expression with increased angiogenesis
via vWF and VEGF expression. The authors
hypothesized that ADSC treatment signifi-
cantly stimulates neo-angiogenesis and
increases tissue regeneration through para-
crine and autocrine mechanisms.87
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Kim et al demonstrated that the adminis-
tration of ADSCs enhanced wound healing
in a mouse model, and that ADSCs promote
human dermal fibroblast proliferation, not
only by cell-to-cell direct contact, which was
confirmed by co-culture experiment, but also
by paracrine activation through secretory fac-
tors, resolved by transwell co-culture and
culturing with conditioned medium of
ADSCs.88 Therefore, it was postulated that
ADSCs did not directly influence wound
healing as previously thought, but worked
indirectly via local mediators.

Indeed, the release of growth factors at the
wound site favors the activation of resident cell
function, the recruitment of cells, and the dif-
ferentiation into resident cell types. In fact, the
ability of topically applied ADSCs to differen-
tiate into endothelial and epithelial cells as well
as their capacity to release large amounts of
proangiogenic growth factors have been
described.89

Evidence of an effective treatment with
ADSCs in diabetic ulcers derives from several
clinical trials.90 Nevertheless, there are some
limitations to the use of autologous ADSCs,
due to an altered phenotype of MSCs in dia-
betic patients: when characterized phenotypi-
cally and functionally, diabetic MSCs were less
potent than normal ones, with a decreased
expression of VEGF-A and chemokine receptor
CXCR4 in fibroblast positive ADSCs. High
expression of fibroblast markers associated
with reduced expression of VEGF-A may affect
the effectiveness of autologous cell therapies in
diabetic patients. Therefore, in diabetic patients
an allogenic donor could be the optimal
source.91

FOCUS ON ADSCS APPLICATION
FOR WOUND HEALING IN SYSTEMIC

SCLEROSIS

Scleroderma, or systemic sclerosis (SSc), is
a chronic multisystem autoimmune disease
characterized by vasculopathy, diffuse fibrosis
of skin and various organs and immune abnor-
malities. Patient suffering for SSc have often

hand disability for the presence of digital ulcers
that severely interfere with daily life.8

Although the pathophysiology of SSc is
undoubtedly complex and remains incom-
pletely understood, progresses have been made
in elucidating at least some of the multiple
mechanisms which are likely to contribute to
the vascular and fibrotic alterations.92 Most
research on the changes in vascular and fibrotic
features in SSc has focused on the MSCs with
conflicting results.93 BM-MSCs from patients
with SSc are similar to those from healthy
donors in terms of their phenotype and capacity
to differentiate into adipogenic and osteogenic
lineages,94 showed an upregulation of pericyte-
specific markers and a decreased proliferation
capacity.95 It has also been shown that SSc
MSCs constitutively over-express and release
pro-angiogenic mediators compared with
healthy control MSCs.96

In 2013 an open-label and single arm study
was performed in 12 SSc patients in order to
evaluate the number of adverse events related
to SVF injection.97 This procedure improved
manifestations of peripheral vasculitis as
Raynaud’s phenomenon, ameliorate digital
ulcers and consequently had an impact on hand
pain. These results suggest that SVF may
improve vasomotor tone and microvascular
perfusion. This hypothesis is further substanti-
ated by the significant reduction of avascular
areas and dystrophic capillaries evaluated using
nailfold capillaroscopy.

In 2014, an Italian group performed a study
on finger injection of ADSCs in 15 SSc
patients, having a long-lasting digital ulcer in
only one fingertip, unresponsive to intensive
systemic and local treatment. An improvement
in healing time, a significant reduction of pain
intensity and an increase in the number of
capillaries has been showed after a 6-month
follow up period.98

Other authors reported data on the thera-
peutic effects of MSC local or regional
transfer in patients with SSc suffering from
ischemic lesions in their fingers or limbs.
Although only few cases were described, it
is noticeable that the adopted procedures
have constantly induced an improvement on
ischemic lesions.99
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FOCUS ON ADSCS APPLICATION
FOR WOUND HEALING IN
AUTOIMMUNE DISEASES

ADSCs have been proposed as candidates
for the treatment of wound healing in of differ-
ent immune-mediated diseases,100,101 however
the greater experience is available with non-
ADSCs (generally, BM and UCB-MSCs).102

Studies on preclinical efficacy of ADSCs in
autoimmune diseases such as systemic lupus
erythematosus, rheumatoid arthritis (mainly
collagen-induced arthritis), Crohn’s disease
(experimental colitis), experimental autoim-
mune hearing loss, experimental autoimmune
thyroiditis, experimental autoimmune encepha-
lomyelitis (model of multiple sclerosis), and
immune thrombocytopenia have been carried
out in different animal models103–124 (Table 1).
The current evidences of cellular therapy for
autoimmune diseases in humans are mainly
based on non-controlled trials. Few clinical
studies on the immunomodulatory properties of
ADSCs have been performed; they are mainly
case reports based on compassionate-use treat-
ments for rheumatoid arthritis, multiple sclero-
sis, polymyositis, autoimmune inner ear
disease, atopic dermatitis, and autoimmune
thrombocytopenic purpura. Moreover, the adi-
pose tissue-derived SVF58 has been success-
fully administered instead of ex vivo culture-
expanded ADSCs in rheumatoid arthritis and
multiple sclerosis, showing encouraging
results.124 Also in the case of autoimmune dis-
eases other than diabetes, MSCs have an altered
phenotype and function. An allogenic rather
than autologous MSC-based therapy might be
preferable for treatment. Indeed, autologous
MSCs are characterized by an early senescence,
but they preserve immunomodulatory proper-
ties that support their use anyway.125

TISSUE BIOENGINEERING

Regarding skin wound healing, tissue engi-
neering is making strides in creating new bio-
medical skin substitutes.126 Indeed, the
combination of cell therapy with biomaterials
is one of the main challenges to treat wound

healing. Numerous studies of biomaterials for
wound dressings have been performed for the
improvement of the functions that support
wound healing. Materials for wound dressings
are required to have good biocompatibility,
wound-sealing capability, and to maintain a
humid environment to inhibit drying of the
wound. Additionally, fabrication is desired for
sponge, film, and gel forms to adjust to the
wound shape or size. Wound dressings are also
required to have an absorption capability of
wound exudates fluid, which includes impor-
tant growth factors to stimulate cells of the
immune system. As reported by our group, silk
fibroin can possess all these properties and
combination of human ADSCs with silk fibroin
resulted in accelerated wound healing of dia-
betic ulcers in impaired db/db diabetic mice.89

Moreover, topical application of human
ADSCs seeded on a silk fibrin-chitosan scaffold
was shown to improve wound repair and these
cells were shown to differentiate and contribute
to fibrovascular, endothelial, and epithelial
components of the reconstituted tissue .127

Very recent evidence coming from animal
models suggest that also allogenic ADSC
sheets,128 or ADSC spheroids assembled on
polymer membranes could be a future thera-
peutic approach.129 The advantage of such bio-
engineering techniques is to provide ADSCs
with a more favorable milieu for cytokine and
chemokine production, as demonstrated by ani-
mal models.129 Furthermore, the use of antibac-
terial materials such as chitosan may reduce the
risk of bacterial growth, thus reducing the inci-
dence of side effect.130

CLINICAL STUDIES WITH ADSCS AS
CELL-BASED THERAPY

Stem cell research is in its early stages of
development and the market is therefore still
behind. Approximately 4 million people
affected by wound healing impairments for dia-
betes, autoimmune disease or burns in the US
would benefit from cell therapy products.

The US. Food and Drug Administration
(FDA) defines somatic cell therapy as the
administration of autologous, allogenic or
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xenogenic non-germ cells excluding blood
products for transfusion, which have been
manipulated, processed, propagated, expanded,
selected ex vivo, or drug-treated.131 Cell ther-
apy products are considered as drugs, so they
follow the same regulations, adhering to the
Current Good Manufacturing Practices (GMP),
which establish minimum quality requirements
for their manipulation. The key points of the
current FDA regulation for cell therapy prod-
ucts include: demonstrations of preclinical
safety and efficacy; no risk of transmission of
infectious or genetic diseases from donors; no
risk of contamination or other adverse effects
of cells or sample processing; specific and
detailed determination of cell type, purity and
potency of the final product; in vivo safety and
efficacy of the final product.132 Clinical appli-
cations using ADSCs for wound healing, burns,
diabetic foot and chronic limb ischemia are
underway throughout Asia, Europe and North
and South America. Some of these can be
found on the clinicaltrials.gov website [clini-
caltrials.gov (Accessed on 20 November
2015)], where 10 studies are listed under the
search term “adipose stem cell” AND “wound”
(as of 20 November 2015). Of these, 7 studies
actually are recruiting patients, 1 is complted, 1
is active and 1 is unknown because it has not
been updated (clinicaltrials.gov) (Table 2).

LIMITATIONS

For translational medicine, safety remains a
major issue. First of all, although stem cells
have been largely studied in vitro and in animal
models, in vivomechanisms are largely obscure
and the biological implications in humans still
remain to be proven, Another limitation in the
use of MSCs is that they are found in a very
small amount in the tissue of origin, thus
requiring expansion protocols in vitro. During
the protocol the risk of contamination of the
cells is low, but still possible. Furthermore,
also the risk of exposure to prions and of immu-
nological should be considered. These risks are
due to the fact that supplements often have an
animal origin and they could be overcome with
the use of synthetic media. Another risk is the

exposure to toxic agents such as endotoxin.
Then, unpredictable fluctuations of the milieu
of MSCs during expansion or after transplanta-
tion, could affect their biological functions .133

Although acute toxicity seems not to be a major
concern, based on findings in >2,000 patients
so far exposed to MSCs,134 and fewer to
ADSCs,135 evidence from animal models sug-
gests that the approach might be associated
with loss of endogenous tumor surveillance. In
fact, descriptions of the possible involvement
of ADSCs in tumorigenesis have been reported
in vitro e in vivo,135–137 and biological mecha-
nisms are poorly understood. ADSCs are
appealing thanks to their ability to proliferate
and differentiate also secreting cytokines and
growth factors and their immunoregulatory
function. Overall, these characteristics may
expose the patients both to oncogenic/tumor-
supporting risk and to ectopic differentiation
risk.138 There is growing evidence that MSC
treatment is safe in humans, although cancer
recurrence after fat grafts have been reported in
patients whose history was notable for sar-
coma,139 and breast cancer.140 Finally, the pos-
sibility that cell expansion could give rise to
genomic abnormalities is still debated,
although major concerns derive more from the
possibility of an accelerated cell senescence,
that could expose the patient to more side
effects or to less efficacy. Indeed, Importantly,
long-term safety data are lacking and imple-
mentation of devoted registries is critical, espe-
cially regarding tumor surveillance.

Therefore, despite the encouraging data
regarding therapeutic applications, the oppor-
tunity of stem cell therapy should be care-
fully evaluated in each patient, balancing the
risks and benefits of a relatively novel
technique.

CONCLUSIONS

In recent years, basic and translation
research held great hope for this new field with
significant progress in the modulation of stem
cell commitment in vitro and providing proto-
cols for targeted clinical applications. Recent
advances in bioengineering and nanotechnology
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have allowed researchers to manipulate micro-
environments in increasingly precise spatial
and temporal scales, recapitulating key homeo-
static cues that may drive regeneration. MSCs
are able to secrete a large number of trophic
factors capable of repairing the recipient tissue
through angiogenic, anti-apoptotic and anti-
fibrotic mechanisms. In this context, adipose
tissue is emerging as a clinically relevant and
easy to harvest source of multipotent progeni-
tors to develop regenerative therapies. The
application of ADSCs in wound repair and tis-
sue regeneration has been shown in a number
of experimental models both in vitro and in
vivo. The positive outcome obtained with this
therapeutic approach, although promising, is
limited to small cohorts of patients and needs
to be confirmed in larger and controlled studies.

Based on the interesting available evidence
in the literature, we are confident that MSCs
cell therapy will be a promising and important
strategy for chronic wound repair in a next
future. Understanding the dynamics that regu-
late MSCs homeostasis, especially their anti-
inflammatory effect and immunomodulatory
capacity, has led to challenge a number of con-
solidated beliefs on their therapeutic mecha-
nisms. Since the precise mechanism which
allows this effect is not completely understood,
more studies, focused on the role of adult stem
cells in wound healing, are needed in order to
address this question and improve the efficacy
of this therapy.

Furthermore the possibility to obtain a final
cell product containing viable adipocyte, pre-
adipocyte, and stem cells, eliminating problems
related to enzymatic digestion and other manip-
ulations, exhibits a great appeal not only for its
application in plastic and reconstructive medi-
cine, but also in research, and regenerative
medicine.
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